

Blood 142 (2023) 4909-4911

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

721.ALLOGENEIC TRANSPLANTATION: CONDITIONING REGIMENS, ENGRAFTMENT AND ACUTE TOXICITIES

Venetoclax+Azacytidine Followed By Modified BuCy Conditioning Regimen for High Risk or Refractory/Relapsed Acute Lymphoblastic Leukemia and High Risk Myelodysplastic Syndromes

QI Tan, MD¹, Zheng Li², Sifan Chen¹, Qingya Cui³, Mengyun Li¹, Ye Zhao¹, Feng Chen¹, Depei Wu, MD¹, Xiaowen Tang¹

¹ National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China

² National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China

³ Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China

Background:Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only potential curable treatment for myelodysplastic syndromes (MDS) and acute lymphoblastic leukemia (ALL). However, for patients with high-risk or refractory relapsed (R/R) B-ALL with allo-HSCT, the three-year overall survival (OS) rate is only 5-10%, more worse in T-ALL. It is widely known that MDS patients in the high-risk group do not benefit from induction chemotherapy, the five-year OS rate is 23-39% when they received allo-HSCT. Nevertheless, relapse remains a significant cause of treatment failure after allo-HSCT, highlighting the urgent need for improved conditioning regimens that can improve prognosis and reduce relapse rates. Azacytidine (AZA) combined with Venetoclax (VEN), showed a synergistic anti-tumor activity against several hematological malignancies, Therefore, we explored AZA+VEN (VA) combined with modified BuCy(mBuCy) (semustine, cytarabine, busulfan, and cyclophosphamide) conditioning regimen and assessed the safety and effectiveness.

Aims :The aim of this study is to assess the safety, and effectiveness of the VA treatment regimen followed by mBuCy as conditioning regimen for high-risk or R/R ALL(NCT05809167) and high-risk MDS(NCT03256071).

Methods:Patients diagnosed with high-risk or R/R ALL or high-risk MDS (IPSS-R score), undergoing VA+mBuCy as conditioning regimen, and consolidation treatment with demethylating drugs every three months after transplantation, for a total of 8-12 cycles.

Results:Patients diagnosed with high-risk or R/R ALL(n=11) or high-risk MDS (IPSS-R score)(n=8) were enrolled between January 13, 2022, and June 9, 2023.

The ALL cohort comprised of 5 Ph-negative B-ALL, 2 Ph-positive B-ALL, 3 mixed phenotype leukemias (MPAL), and one Tlymphoblastic lymphoma/leukemia (T-ALL/LBL). There were 7 males and 4 females, with a median age of 33 years (17-54 years) (Table 1). Out of the eleven patients, four had previously undergone Chimeric Antigen Receptor T-Cell Immunotherapy (CAR-T) therapy, and one patient had received Blinatumomab. One patient experienced relapse, another patient was refractory, and 3 patients had extramedullary infiltration.

All patients achieved morphological complete remission prior to transplantation, and 10 patients (90.9%) achieved a MRD negative remission. Additionally, all the transplantations successfully completed, with a median time to absolute neutrophil counts (ANC) recovery of 12 days (11-15 days) and platelet (PLT) recovery of 16 days (15-21 days). The median follow-up time was 6.4 months (2.4 -13.6 months), no patient experienced relapse or death, the OS and DFS are both 100%. There were no grade 3 or higher adverse events (AEs), hepatic veno-occlusive disease (VOD), and the transplant-related mortality (TRM). Four patients who developed acute graft-versus-host disease (aGVHD) post-transplantation, all cases involved grade I/I skin aGVHD, and one of them involved grade III GI aGVHD, and no chronic graft-versus-host disease (cGVHD) were observed during the follow-up period. By the endpoint of follow-up, Cytomegalovirus (CMV) activation was 45.4% (5/11) and Epstein-Barr virus (EBV) activation was 27.3% (3/11).

The MDS cohort consisted of 7 cases of MDS-EB-I, 1 case of MDS-EB-II. There were 5 males and 3 females, with a median age of 42 years (23-57 years)(Table 2). Two patients received chemotherapy before transplantation, and the other six patients directly received allo-HSCT.

In MDS cohort, the median recovery time for ANC was 12 days (11-13 days) and PLT was 17.5 days (16-20 days). The median follow-up was 14.3 months (1.2-18.3 months), no patient had relapsed or died, both OS and DFS are 100%. There were no

POSTER ABSTRACTS

grade 3 or higher AEs, and TRM. One patient developed VOD. Three patients developed aGVHD after transplantation, all involving degree I/II skin aGVHD, and there was one case of cGVHD during the follow-up period, where the patient developed a mild pulmonary cGVHD. By the endpoint of the follow-up, the rate of CMV activation was 37.5% (3/8) and EBV activation was 25% (2/8).

Conclusion: The VA combined with the mBuCy proves to be a effective and safe conditioning regimen for high-risk ALL and MDS patients. However, more patients are needed for follow-up and validation.

Disclosures No relevant conflicts of interest to declare.

https://doi.org/10.1182/blood-2023-185976

& blood® 2 NOVEMBER 2023 | VOLUME 142, NUMBER Supplement 1 4911

ient No.		Age(y)	Diagnosis	High Risk Factor	Type of donor	Pretransplant state			PLT recovery(d)	Current disease state		DFS(m)
1	Female	54	B-ALL	MLL-AF4/Relapse	Haplo	CR2	2022/6/20	13	21	CMR	13.60	13.60
2	Female	19	Ph+ALL	Extramedullary infiltration	Haplo	CR1	2022/7/11	13	18	CMR	12.93	12.93
3	Male	42	Ph+ALL	BCR-ABL1	Haplo	CR1	2022/10/14	13	18	CMR	9.73	9.73
4	Male	17	B-ALL	Extramedullary infiltration	Haplo	CR1	2023/1/6	12	16	CMR	7.03	7.03
5	Male	33	T-LBL/ALL	Extramedullary infiltration/Hyperleu kocytemia	Haplo	CR1	2023/2/24	12	16	CMR	5.33	5.33
6	Female	50	B-ALL	UQCC3- KMT2A/complex karyotype	Haplo	CR1	2023/2/28	12	16	CMR	5.27	5.27
7	Male	46	B-ALL	Complex karyotype/TP53	URD	CR1	2023/4/11	11	15	CMR	3.70	3.70
8	Male	29	B-ALL	MLL-AF4/TP53	Haplo	CR1	2023/5/23	12	16	CMR	2.40	2.40
9	Male	27	T/B-MPAL	Refractory	Haplo	CR1	2022/4/26	12	16	CMR	3.10	3.10
10	Female	25	M/B-MPAL	BCR- ABL1/Hyperleukocyt emia	Haplo	CR1	2022/6/30	13	17	CMR	13.27	13.27
11	Male	36	T/M-MPAL	Mixed phenotype	Haplo	CR1	2023/1/28	15	19	CMR	6.27	6.27

atient No.	Gender	Age(y)	Diagnosis	IPSS-R	Type of donor	Pre-transplant chemotherapy	Time of enrolment		PLT recovery(d)	Current disease state	OS(m)	DFS(m)
1	Female	23	MDS-EB-I	High-Risk	Haplo	N	2022/2/10	11	16	CR	18.33	18.33
2	Female	36	MDS-EB-I	High-Risk	MSD	Y	2022/4/8	13	17	CR	16.03	16.03
3	Male	57	MDS-EB-I	High-Risk	Haplo	Y	2022/4/15	13	20	CR	15.83	15.83
4	Male	43	MDS-EB-I	High-Risk	Haplo	N	2022/5/10	12	17	CR	14.97	14.97
5	Male	40	MDS-EB-II	High-Risk	Haplo	N	2022/5/16	13	19	CR	14.80	14.80
6	Male	35	MDS-EB-I	High-Risk	Haplo	N	2022/11/25	11	18	CR	8.33	8.33
7	Female	55	MDS-EB-I	Very High-Risk	Haplo	N	2023/3/24	12	17	CR	4.40	4.40
8	Male	55	MDS-EB-I	High-Risk	Haplo	N	2023/6/19	13	19	CR	1.27	1.27